Medical Meets Microscopy (Quality)

Medical Meets Microscopy
Elaine F. Schumacher
Quality Magazine – June 6, 2013

Analysis of medical device materials takes place during all stages of their design and use, from initial fabrication and prototype development to examination of the device or surrounding tissues after it has been removed from the patient. Understanding materials’ properties and related performance is critical, as it can prevent device failure, improve patient safety, and drive innovations in materials and device design.

When developing metal alloys for use in medical devices, microstructural characteristics such as crystalline phase, presence of secondary phases, and uniformity of elemental distribution are assessed and combined with results from performance testing to determine whether an alloy is suitable for the intended application.

Electron microscopes are often used to analyze medical device materials. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS) can be used for imaging and elemental analysis of bulk samples. The transmission electron microscope (TEM) provides similar information but at higher resolution, as the electron beam is transmitted through a very thin specimen. Using electron diffraction, crystallographic information can also be obtained in the TEM. TEM results complement those provided by SEM and by bulk X-ray diffraction (XRD) methods such as powder or small particle XRD.

Laboratories specializing in materials analysis employ an experienced scientific staff to analyze samples.

Full article available