Instructors who teach this course:

Upcoming Dates

July 17, 2017 to July 21, 2017

Credits: 3 | Pricing: $1995
8AM - 5PM
8AM - 5PM
8AM - 5PM
8AM - 5PM
8AM - Noon

Are you interested in this course, but it is either not offered or not at a time that works with your schedule?

You will be contacted once this course becomes available.

Course Details

Course Outline
  • Introduction
  • Crystal systems and symmetry; review of Miller indices
  • Properties of light and polarized light; dispersion
  • Refraction and Snell's law; velocity vs. refraction; relief
  • Isotropic and anisotropic substances, and the relation of crystal symmetry to optical properties; calcite experiment
  • Anisotropic optics: Extinction, retardation, phase interference phenomena, birefringence, extinction
  • The optical indicatrix; isotropic and anisotropic (uniaxial/biaxial)
  • The petrographic microscope; components, and adjustment for orthoscopic and conoscopic observation.
  • Properties observable with the petrographic microscope: Twinning, pleochroism, cleavage, birefringence, sign of elongation, extinction angles; relation to crystal symmetry, anomalous interference colors, interference figures.
  • Formation of interference figures: Optic axis, off-center optic axis, Bxa, Bxo, optic normal (flash), random figures; use of angle of entry and exit of hyperbola (AEEH) to diagnose centered figures. Recognition of interference figures and application to interpretation of crystal orientation in uniaxial and biaxial minerals: Optic sign; determination using both a waveplate and a quartz wedge, optic angle (2V) and relation to indices of refraction in biaxial minerals, optic axis dispersion; crossed axial plane dispersion
  • Refractometry: Identification of crystalline materials using calibrated index liquids and the colored Becke line; cause of Becke line colors.
  • Properties of the more important rock-forming and accessory minerals in thin section: Silica-group minerals; polymorphs of SiO2, feldspar minerals; K-spar and plagioclase groups, amphibole- and pyroxene-group minerals, phyllosilicates, carbonates, accessory minerals.
  • Ore microscopy: Demonstration of basic optical properties (reflectance, bireflectance, anisotropism, reflection pleochroism, Kalb line, etc.) that can be measured in reflected light, and their application to identifying opaque minerals or characterizing metallurgical samples; comparison of the properties of reflected and transmitted light.
What You Will Learn

Principles, theory, and practice of optical crystallography using polarized-light microscopy (PLM) applied to particle and materials characterization and identification.

Who Should Enroll

Everyone with the need for problem solving using optical crystallography and polarized light microscopy, including:

  • Chemists
  • Materials scientists
  • Geologists/Mineralogists
  • Archaeologists
  • Criminalists
Student Learning Resources
  • Detailed course manual
  • Essentials of Polarized Light Microscopy
  • Olympus BX51 microscope with polarized light capabilities for each student
Suggested Prerequisites
Satisfactory Completion Requirements

Students are expected to successfully complete a variety of tasks in the form of hands-on exercises, laboratory exercises, identifications of unknowns, and quizzes. In addition, the students are required to have 100% attendance during the course, participate in class, complete a student evaluation form and pre and post course assessment forms.

The student is notified at the end of the course whether or not they have successfully completed the requirements of the course based on:

  • 100% attendance
  • class participation
  • completion of all course material
  • completed and signed student evaluation form

Upon successfully meeting these requirements, a student is awarded a certificate of completion and CEU credits, if available. Those who have not successfully passed the course requirements do not receive a certificate or CEU credits.

We are here to answer your questions about this course.

Share this